Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38536151

RESUMO

The rape stem weevil (Ceutorhynchus asper Roel.) and its close relatives primarily breed on cruciferous plants and cause severe damage to rapeseed production. However, their genetic and molecular information is still scarce. Here, we generated mitogenomes for both C. asper and Ceutorhynchus albosuturalis. The lengths of the 2 mitochondrial genomes are 14,207 bp (C. asper) and 15,373 bp (C. albosuturalis), and both weevils exhibit identical numbers of protein-coding genes with the absence of trnI. A + T contents for both mitogenomes are high (80% and 79.9%, respectively). Haplotype and genetic distance analyses showed that the genetic differentiation of C. asper populations in northwestern China is low. Based on 5 datasets from mitogenomes, phylogenetic analyses with maximum-likelihood and Bayesian methods show that both species (C. asper and C. albosuturalis) fall in the CCCMS clade (Curculioninae, Conoderinae, Cossoninae, Molytinae, and Scolytinae) of Curculionidae and belong to clades H and I of the genus Ceutorhynchus, respectively. Larvae of the clade H weevils mainly are borers in petioles or stems of cruciferous plants, while larvae of the clade I weevils mainly inhabit the fruits of the same plants, suggesting that ecological niche specialization can play a critical role in the diversification of Ceutorhynchus species. This study generates baseline molecular and genetic information for future research of Ceutorhynchus-related taxa and provides insights into the phylogeny and evolution of Curculionidae.


Assuntos
Brassica rapa , Besouros , Genoma Mitocondrial , Gorgulhos , Animais , Filogenia , Teorema de Bayes , Larva
2.
Mol Breed ; 44(1): 3, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222975

RESUMO

The spikes of gramineous plants are composed of specialized units called spikelets. Two bracts at the spikelet bases are known as glumes. The spikelet glumes in barley are degenerated into threadlike structures. Here, we report a long glume mutant, lgm1, similar in appearance to a lemma with a long awn at the apex. Map-based cloning showed that the mutant lgm1 allele has an approximate 1.27 Mb deletion of in chromosome 2H. The deleted segment contains five putative high-confidence genes, among which HORVU.MOREX.r3.2HG0170820 encodes a C2H2 zinc finger protein, an ortholog of rice NSG1/LRG1 and an important candidate for the Lgm1 allele. Line GA01 with a long glume and short awn was obtained in progenies of crosses involving the lgm1 mutant. Interestingly, lsg1, a mutant with long glumes on lateral spikelets, was obtained in the progenies of the lgm1 mutant. The long glume variant increased the weight of kernels in the lateral spikelets and increased kernel uniformity across the entire spike, greatly improving the potential of six-rowed barley for malting. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01448-x.

3.
Biochem Pharmacol ; 217: 115862, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858869

RESUMO

Bictegravir (BIC), a second-generation integrase strand-transfer inhibitor (INSTI) with high resilience to INSTI-resistance mutations, is integrated as a key component of Biktarvy® - a fixed-dose once-daily triple-drug regimen of bictegravir (BIC), emtricitabine (FTC) plus tenofovir alafenamide (TAF). Based on the accumulated evidence from HIV clinical trials and real-world studies, the clinical effectiveness of BIC + FTC + TAF has been proven non-inferior to other fixed-dose once-daily combinations such as dolutegravir + FTC + TAF and dolutegravir + abacavir + lamivudine. Biktarvy also shows limited drug-drug interactions and a high barrier to drug resistance. According to recent HIV guidelines, BIC + FTC + TAF is recommended as initial and long-term therapy for the treatment of HIV infection. For the pre-exposure prophylaxis, tenofovir disoproxil fumarate (TDF) or tenofovir alafenamide (TAF) remains advisable, but BIC may be possibly added to TDF or TAF. In the development of a long-acting once-monthly regimen, the novel nano-formulation of BIC + FTC + TAF could be possibly developed in the future.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Piridonas , Tenofovir/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Adenina , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/farmacologia
4.
J Exp Bot ; 71(22): 7118-7131, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32915968

RESUMO

Barley possesses a branchless, spike-shaped inflorescence where determinate spikelets attach directly to the main axis, but the developmental mechanism of spikelet identity remains largely unknown. Here we report the functional analysis of the barley gene BRANCHED AND INDETERMINATE SPIKELET 1 (BDI1), which encodes a TCP transcription factor and plays a crucial role in determining barley inflorescence architecture and spikelet development. The bdi1 mutant exhibited indeterminate spikelet meristems that continued to grow and differentiate after producing a floret meristem; some spikelet meristems at the base of the spike formed two fully developed seeds or converted to branched spikelets, producing a branched inflorescence. Map-based cloning analysis showed that this mutant has a deletion of ~600 kb on chromosome 5H containing three putative genes. Expression analysis and virus-induced gene silencing confirmed that the causative gene, BDI1, encodes a CYC/TB1-type TCP transcription factor and is highly conserved in both wild and cultivated barley. Transcriptome and regulatory network analysis demonstrated that BDI1 may integrate regulation of gene transcription cell wall modification and known trehalose-6-phosphate homeostasis to control spikelet development. Together, our findings reveal that BDI1 represents a key regulator of inflorescence architecture and meristem determinacy in cereal crop plants.


Assuntos
Hordeum , Meristema , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Meristema/genética , Meristema/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...